school

thing1's amazing school repo
Log | Files | Refs | Submodules | README

vectors.ms (1989B)


      1 .TL
      2 Vectors in comp sci
      3 .AU
      4 Lucas Standen
      5 .AI
      6 QMC
      7 .2C
      8 
      9 .EQ
     10 delim @@
     11 .EN
     12 
     13 .EQ
     14 delim @#
     15 .EN
     16 
     17 .NH 1
     18 How to write them 
     19 
     20 .LP
     21 To write  a vector, like in maths we can use 
     22 .EQ
     23 ({i sub x, j sub y})
     24 .EN
     25 But they can also be written
     26 .EQ
     27 R sup 2
     28 .EN
     29 
     30 .EQ
     31 R sup 3
     32 .EN
     33 Where the power is the number of degrees available
     34 
     35 .NH 1
     36 Combining vectors
     37 .LP
     38 To combine vectors one can use the formula
     39 .EQ
     40 w = alpha u + beta v
     41 .EN
     42 Where w is the combined vector and
     43 .EQ
     44 alpha + beta = 1
     45 .EN
     46 
     47 .NH 2
     48 Example
     49 .EQ
     50 u = (2,2)
     51 .EN
     52 
     53 .EQ
     54 v = (6,-2)
     55 .EN
     56 
     57 We can then say that
     58 .EQ
     59 w = (4, 0)
     60 .EN
     61 By subtracting v from u
     62 
     63 Then using the formula
     64 .EQ
     65 2 alpha + 6 beta = 3
     66 .EN
     67 Where 3 is a point on the combined vector
     68 .EQ
     69 2 alpha + -2 beta = 1
     70 .EN
     71 
     72 We can then solve for @ beta # like so
     73 
     74 .EQ
     75 6 beta - 3  = -2 beta - 1
     76 .EN
     77 
     78 .EQ
     79 8 beta - 2 = 0
     80 .EN
     81 
     82 .EQ
     83 8 beta = 2
     84 .EN
     85 
     86 .EQ
     87 beta = 2 over 8
     88 .EN
     89 
     90 .EQ
     91 beta = 1 over 4
     92 .EN
     93 
     94 From this we can say 
     95 .EQ
     96 alpha = 3 over 4
     97 .EN
     98 Because 
     99 .EQ
    100 alpha + beta = 1
    101 .EN
    102 
    103 .NH 2
    104 Another example
    105 
    106 .EQ
    107 2 alpha + 6 beta = 2
    108 .EN
    109 
    110 .EQ
    111 2 alpha - 2 beta = 1
    112 .EN
    113 
    114 .EQ
    115 8 beta = 1
    116 .EN
    117 
    118 .EQ
    119 beta = 1 over 8
    120 .EN
    121 
    122 .EQ
    123 2 alpha - 2 ({1 over 8}) = 1
    124 .EN
    125 
    126 .EQ
    127 2 alpha = 5 over 4
    128 .EN
    129 
    130 .EQ 
    131 alpha = 5 over 8
    132 .EN
    133 
    134 Since 
    135 .EQ
    136 alpha + beta != 1
    137 .EN
    138 We can say that w does not lie on the vector uv
    139 
    140 And because it is greater than 1 it means it is inside the triangle created by u and v
    141 
    142 .NH 1
    143 The dot product
    144 
    145 .LP
    146 To solve use the following formula
    147 
    148 .EQ
    149 u.v = |u|.|v| cos( theta )
    150 .EN
    151 
    152 Where @ theta # is the angle between the 2 vectors and
    153 
    154 .EQ
    155 |u| = " magnitude of u, " sqrt {x sup 2 + y sup 2}
    156 .EN
    157 
    158 You can also use
    159 .EQ
    160 u.v = u sub 1 . v sub 1 + u sub 2 . v sub 2 + u sub n + v sub n ...
    161 .EN
    162 If you don't have the angle
    163 
    164 Don't be confused by the dot, it just means
    165 .EQ
    166 u sub 1 . v sub 1 = u sub 1 times v sub 1
    167 .EN
    168 
    169 .NH 2
    170 Exam question
    171 
    172 .LP
    173 1.1)
    174 .EQ
    175 |b| = 4
    176 .EN
    177 
    178 1.2)
    179 .EQ
    180 u.v = u sub 1 . v sub 1 + u sub 2 . v sub 2 + u sub n + v sub n ...
    181 .EN
    182 
    183 .EQ
    184 a.b =  4 . 4 + 3 . 0
    185 .EN
    186 
    187 .EQ
    188 a.b =  16 + 0
    189 .EN
    190 
    191 .EQ
    192 a.b =  16 
    193 .EN