school

thing1's amazing school repo
Log | Files | Refs | Submodules | README

writeup.ms (1505B)


      1 .2C
      2 
      3 .NH
      4 Differentiating standard equations
      5 .EQ L
      6 dy over dx = n x sup n-1 
      7 .EN
      8 .NH 2
      9 Example
     10 .LP
     11 Define the equation
     12 .EQ L
     13 y = 5 x sup 2 + 19 x + 8
     14 .EN
     15 Use the formula
     16 .EQ L
     17 dy over dx = 10 x + 19
     18 .EN
     19 Its very simple
     20 .NH
     21 Differentiating trig equations
     22 .LP
     23 From the chain rule, one can find the following:
     24 .EQ L
     25 sin(kx) -> k cos(kx)
     26 .EN
     27 .EQ L
     28 cos(kx) -> -k sin(kx)
     29 .EN
     30 .EQ L
     31 tan(kx) -> k sec sup 2 (kx)
     32 .EN
     33 .EQ L
     34 sec(kx) -> k sec(kx) tan(kx)
     35 .EN
     36 .EQ L
     37 cot(kx) -> -k cosec sup 2 (kx)
     38 .EN
     39 .EQ L
     40 cosec(kx) -> -k cosec(kx) cot(kx)
     41 .EN
     42 .NH
     43 Chain rule
     44 .EQ L
     45 dy over dx = dy over dt times dt over dx
     46 .EN
     47 .NH 2
     48 Example
     49 .LP
     50 Define the function
     51 .EQ L
     52 y =sin sup 2 (9x)
     53 .EN
     54 Re-write y in terms of t
     55 .EQ L
     56 Y =sin sup 2 (t)
     57 .EN
     58 Define t
     59 .EQ L
     60 t = 9x
     61 .EN
     62 Differentiate y with respect to t
     63 .EQ L
     64 dy over dt = 2cos(t)
     65 .EN
     66 Differentiate y with respect to x
     67 .EQ L
     68 dt over dx = 9
     69 .EN
     70 Times the two together
     71 .EQ L
     72 dy over dx = 2cos(t) times 9
     73 .EN
     74 Substute the original t back in
     75 .EQ L
     76 dy over dx = 18cos(9x)
     77 .EN
     78 
     79 .NH
     80 Product rule
     81 
     82 .EQ L
     83 "when " y = u v
     84 .EN
     85 .EQ L
     86 dy over dx = ( v prime times u ) + ( v times u prime )
     87 .EN
     88 .NH 2
     89 Example
     90 
     91 .LP
     92 Define the equation
     93 .EQ L
     94 y = sin(x) cos(x)
     95 .EN
     96 Define u and v
     97 .EQ L
     98 u = sin(x)
     99 .EN
    100 .EQ L
    101 v = cos(x)
    102 .EN
    103 Differentiate indiviually
    104 .EQ L
    105 u prime = cos(x)
    106 .EN
    107 .EQ L
    108 v prime = -sin(x)
    109 .EN
    110 Put into the formula
    111 .EQ L
    112 ( v prime times u ) + ( v times u prime ) = -sin(x)sin(x) + cos(x)cos(x)
    113 .EN
    114 Simplify
    115 .EQ L
    116 dy over dx = -sin sup 2 (x) +cos sup 2 (x)
    117 .EN
    118 .EQ L
    119 dy over dx = cos(2x)
    120 .EN
    121