school

thing1's amazing school repo
Log | Files | Refs | Submodules | README

parametrics.ms (4516B)


      1 .TL
      2 Parametric equations
      3 .AU
      4 Lucas Standen
      5 .AI
      6 QMC
      7 
      8 .EQ
      9 delim @@
     10 .EN
     11 .EQ
     12 delim @#
     13 .EN
     14 
     15 .2C
     16 
     17 .NH 1
     18 What are they?
     19 
     20 .LP
     21 Parametric equations are two equations that are linked by a common variable usually @ t #
     22 
     23 They are written in the format 
     24 .EQ
     25 x = at
     26 .EN
     27 .EQ
     28 y = bt
     29 .EN
     30 The can also include trig functions, exponents and other parts of maths
     31 
     32 You may be asked to, convert to Cartesian, find the range and domain, differentiate and finding points of intersection
     33 
     34 .NH 1
     35 Converting to Cartesian
     36 .LP
     37 
     38 You will often be asked to convert to a Cartesian equivalent equation. To do that you will need to rearrange one of the given equations to get it in terms of @ t #, then substitute that value into the other equation. You will most often find that rearranging @ x # is easier as this will result in an equation equal to @ y #.
     39 
     40 .NH 2
     41 Example
     42 .EQ
     43 x = 2t
     44 .EN
     45 
     46 .EQ
     47 y = t sup 2
     48 .EN
     49 
     50 .EQ
     51 t = x over 2
     52 .EN
     53 
     54 .EQ
     55 y = ({x over 2}) sup 2
     56 .EN
     57 
     58 .EQ
     59 y = x sup 2 over 4
     60 .EN
     61 
     62 .NH 1
     63 Finding the domain and range
     64 .LP
     65 The domain of the Cartesian equation is the range of the @ x # and the range of the Cartesian is the range of the @ y # equation.
     66 
     67 .NH 2
     68 Examples
     69 .LP
     70 .EQ
     71 x = t - 2
     72 .EN
     73 
     74 .EQ
     75 y = t sup 2 + 1
     76 .EN
     77 
     78 .EQ
     79 "where" -4 <= t <= 4
     80 .EN
     81 
     82 .EQ
     83 t = x + 2
     84 .EN
     85 
     86 .EQ
     87 y = (x + 2) sup 2 + 1
     88 .EN
     89 
     90 .EQ
     91 y = x sup 2 + 4x + 4 + 1
     92 .EN
     93 
     94 .EQ
     95 y = x sup 2 + 4x + 5
     96 .EN
     97 
     98 .EQ
     99 f(x) = x sup 2 + 4x + 5
    100 .EN
    101 
    102 .EQ
    103 domain = -6 <= x <= 2
    104 .EN
    105 
    106 .EQ
    107 range = 1 <= f(x) <= 16
    108 .EN
    109 
    110 .NH 1
    111 Differentiating Parametric equations
    112 .LP
    113 This process is relatively simple, and can be solved by viewing @ dy over dx # as fractions. As we can already find @ dx over dt # and @ dy over dt # we can say the following.
    114 
    115 .EQ
    116 dy over dx = {dy over dt} over {dx over dt}
    117 .EN
    118 
    119 This is because the @ dt # will cancel out on the top and bottom.
    120 
    121 .NH 2
    122 Examples
    123 .LP
    124 
    125 .EQ
    126 x = 2t
    127 .EN
    128 
    129 .EQ
    130 y = t sup 2 - 3t + 2
    131 .EN
    132 
    133 .EQ
    134 dx over dt = 2
    135 .EN
    136 
    137 .EQ
    138 dy over dt = 2t - 3
    139 .EN
    140 
    141 .EQ
    142 {dy over dt} over {dx over dt} = 2 over {2t -3}
    143 .EN
    144 
    145 .NH 1
    146 Points of intersection
    147 .LP
    148 This is as simple as substituting in numbers for the most part although sometimes it can be harder due to trig identities showing up.
    149 
    150 .NH 2
    151 Example
    152 .LP
    153 Lets say we have the parametric @ x = t sup 2 # and @ y = 8t - 5 # and we want to know if there is any points of
    154 intersection with the line @ y = 5x + 4 #
    155 
    156 To solve this we can find the Cartesian equation and then do this normally.
    157 .EQ
    158 t = sqrt x
    159 .EN
    160 
    161 .EQ
    162 y = 8{sqrt x} - 5
    163 .EN
    164 
    165 .EQ
    166 "Then we can say"
    167 .EN
    168 
    169 .EQ
    170 5x + 4 = 8{sqrt x} - 5
    171 .EN
    172 
    173 .EQ
    174 5x + 9 = 8{sqrt x}
    175 .EN
    176 
    177 .EQ
    178 5x over 8 + 9 over 8 = sqrt x
    179 .EN
    180 
    181 .EQ
    182 ({5x over 8 + 9 over 8}) sup 2 = x
    183 .EN
    184 
    185 .EQ
    186 {25x sup 2 over 64 + 81 over 64} = x
    187 .EN
    188 
    189 .EQ
    190 25x sup 2 + 81 = 64x
    191 .EN
    192 
    193 .EQ
    194 25x sup 2 -64x + 81 = 0
    195 .EN
    196 
    197 .EQ
    198 "This has no points of intersection because x is imaginary"
    199 .EN
    200 
    201 .LP 
    202 EX 8D Q1a
    203 .EQ
    204 x = 5 + t
    205 .EN
    206 .EQ
    207 y = 6 - t
    208 .EN
    209 .EQ
    210 y = 6 - (x - 5)
    211 .EN
    212 .EQ
    213 y = 11 - x
    214 .EN
    215 .EQ
    216 0 = 11 - x
    217 .EN
    218 .EQ
    219 -11 = - x
    220 .EN
    221 
    222 .EQ
    223 11 = x
    224 .EN
    225 .LP
    226 
    227 EX 8D 12b
    228 .EQ
    229 x = 6cos(t)
    230 .EN
    231 .EQ
    232 y = 4sin(2t) + 2
    233 .EN
    234 .EQ
    235 -{pi over 2} < t < {pi over 2}
    236 .EN
    237 
    238 .EQ
    239 4 = 4sin(2t) + 2
    240 .EN
    241 
    242 .EQ
    243 2 = 4sin(2t) 
    244 .EN
    245 
    246 .EQ
    247 1 over 2 = sin(2t) 
    248 .EN
    249 
    250 .EQ
    251 2t = arcsin({1 over 2})
    252 .EN
    253 
    254 .EQ
    255 2t = pi over 6, {5 pi} over 6
    256 .EN
    257 
    258 .EQ
    259 t = pi over 12, {5 pi} over 12
    260 .EN
    261 
    262 .LP
    263 EX 8D 12c
    264 
    265 .EQ
    266 x = 6cos(t)
    267 .EN
    268 
    269 .EQ
    270 x = 3 sqrt 3, - 3 sqrt 3
    271 .EN
    272 
    273 .EQ
    274 (3 sqrt 3, 4), (- 3 sqrt 3, 4)
    275 .EN
    276 
    277 .LP
    278 EX 8D 13
    279 
    280 .EQ
    281 x = 2t
    282 .EN
    283 .EQ
    284 y = 4t sup 2 - 4t
    285 .EN
    286 
    287 .EQ
    288 t = x over 2
    289 .EN
    290 
    291 .EQ
    292 y = 4({x over 2}) sup 2 - 4 ({x over 2})
    293 .EN
    294 
    295 .EQ
    296 y = 4({x sup 2 over 4}) - 4 ({x over 2})
    297 .EN
    298 
    299 .EQ
    300 y = x sup 2 - 4 ({x over 2})
    301 .EN
    302 
    303 .EQ
    304 y = x sup 2 - 2x 
    305 .EN
    306 
    307 .EQ
    308 2x - 5  = x sup 2 - 2x 
    309 .EN
    310 
    311 .EQ
    312 0 = x sup 2 - 4x + 5
    313 .EN
    314 
    315 .EQ
    316 sqrt {-4 sup 2 - 4 (1) (5) }
    317 .EN
    318 
    319 .EQ
    320 sqrt {16 - 20 }
    321 .EN
    322 
    323 .EQ
    324 sqrt {-4}
    325 .EN
    326 
    327 .EQ
    328 sqrt {-4} " has no real solutions!"
    329 .EN
    330 
    331 .NH 1
    332 Parametric with trig
    333 .LP
    334 Trig often shows up in parametric equations, however using the identities we know, they can be easy to solve. The reason they are harder, is because we can't rearrange to get @ t # like in other questions.
    335 
    336 What we have to do is to use the identities we know, such as
    337 .EQ
    338 sin sup 2 (x) + cos sup 2 (x) = 1
    339 .EN
    340 
    341 An example would be the following
    342 
    343 .EQ
    344 x = 2sin(t)
    345 .EN
    346 
    347 .EQ
    348 y = cos(t) + 2
    349 .EN
    350 
    351 .EQ
    352 sin(t) = x over 2
    353 .EN
    354 
    355 .EQ
    356 cos(t) = y - 2
    357 .EN
    358 
    359 .EQ
    360 ({x over 2}) sup 2 + (y - 2) sup 2 = 1
    361 .EN
    362 
    363 .EQ
    364 {x sup 2 over 4} + y sup 2 -4y + 4 = 1
    365 .EN
    366 
    367 .EQ
    368 {x sup 2 over 4} + y sup 2 -4y + 4 = 1
    369 .EN
    370 
    371 .EQ
    372 {x sup 2} + 4y sup 2 -16y + 16 = 4
    373 .EN
    374 
    375 .EQ
    376 {x sup 2} -16y + 16 - 4= -4y sup 2
    377 .EN
    378 
    379 .EQ
    380 {x sup 2} + 12 = -4y sup 2 + 16y
    381 .EN
    382 
    383 This is an oval shape.