uni

Thing1's amazing uni repo
Log | Files | Refs

hw2.ms (2713B)


      1 .TL 
      2 Calculus assignment 2
      3 .AU 
      4 Lucas Standen (lus53@aber.ac.uk)
      5 
      6 .EQ
      7 delim @@
      8 .EN
      9 .EQ
     10 delim @#
     11 .EN
     12 
     13 .2C
     14 
     15 .LP 
     16 3)a) @f sub 1 (x) = x sup 2#
     17 
     18 @f sub 2 (x) = sqrt x#
     19 
     20 @f sub 1 (1) = 1#
     21 
     22 @f sub 2 (1) = 1#
     23 
     24 @f sub 1 (1) = f sub 2 (1)#
     25 
     26 Therefore f(x) is continuous
     27 
     28 @f' sub 1 (x) = 2x#
     29 
     30 @f' sub 2 (x) = 1 over {2 sqrt x}#
     31 
     32 @lim sub { -> 1} f' sub 1 (x) = 1#
     33 
     34 @lim sub {x -> 1} f' sub 2 (x) = 1 over 2#
     35 
     36 @lim sub {x -> 1} f' sub 2 (x) != lim sub { -> 1} f' sub 1 (x)#
     37 
     38 Therefore f(x) is not differentiable 
     39 
     40 3)b)
     41 .I
     42 See end of doc.
     43 
     44 5)c) @lim sub {h -> 0} {sqrt {3 (x + h) + 1} - sqrt {3 x + 1}} over h#
     45 
     46 @lim sub {h -> 0} {sqrt {3 (x + h) + 1} - sqrt {3 x + 1}} over h {sqrt {3 (x + h) + 1} + sqrt {3 x + 1}} over {sqrt {3 (x + h) + 1} + sqrt {3 x + 1}}#
     47 
     48 @lim sub {h -> 0} {(3 (x + h) + 1) - {(3 x + 1)}} over { h sqrt {3 ( x + h ) + 1} + sqrt {3 x + 1}}#
     49 
     50 @lim sub {h -> 0} { 3h } over { h sqrt {3 ( x + h ) + 1} + sqrt {3 x + 1}}#
     51 
     52 @lim sub {h -> 0} { 3 } over { sqrt {3 ( x + h ) + 1} + sqrt {3 x + 1}}#
     53 
     54 @3 over { 2 sqrt {3 x + 1}} #
     55 
     56 6)b) @u = sqrt x#
     57 
     58 @u' = 1 over { 2 sqrt x }#
     59 
     60 @v = sin x#
     61 
     62 @v' = cos x#
     63 
     64 @ dy over dx = 1 over {2 sqrt x} sin x + sqrt x cos x#
     65 
     66 6)c) @u = 2x#
     67 
     68 @u' = 2#
     69 
     70 @v = 4 + x sup 2#
     71 
     72 @v' = 2x#
     73 
     74 @ dy over dx = {{2 (4 + {x sup 2})} - {4 x sup 2}} over {(4 + {x sup 2})} sup 2#
     75 
     76 @ dy over dx = - {2x sup 2 + 8} over {(4 + {x sup 2})} sup 2#
     77 
     78 7)d) 
     79 
     80 let @f(x) = {x sup 2 + 1} over {x sup 2 - 1}#
     81 
     82 let @y = f(x) sup 3#
     83 
     84 @f' (x)#
     85 
     86 @u = x sup 2 + 1#
     87 
     88 @u' = 2x#
     89 
     90 @v = x sup 2 - 1#
     91 
     92 .I
     93 next page, first column
     94 
     95 .LP
     96 @v' = 2x#
     97 
     98 @f'(x) = {{2x (x sup 2 - 1)} - {2x (x sup 2 + 1)}} over {(x sup 2 - 1) sup 2}#
     99 
    100 @f'(x) = {{(x sup 3 - 2x)} - {(x sup 3 + 2x)}} over {(x sup 2 - 1) sup 2}#
    101 
    102 @f'(x) = {-4x} over {(x sup 2 - 1) sup 2}#
    103 
    104 @dy over dx = 3 f(x) sup 2 f'(x)#
    105 
    106 @dy over dx = -12 ({{{x sup 2} + 1} over {{x sup 2} - 1}}) sup 2 x over {{ (x sup 2 - 1) } sup 2}# 
    107 
    108 8) @g'(x) = cos x - 8 sin 4x#
    109 
    110 @g''(x) = -sin x - 32 cos 4x#
    111 
    112 @g'({pi over 4}) = {sqrt 2} over 2#
    113 
    114 @g''({pi over 4}) = {64 - sqrt 2} over 2#
    115 
    116 9)c) 
    117 Differentiate the first half
    118 @d over dy cos(x + y)#
    119 
    120 @y = cos t#
    121 
    122 @y' = -sin t#
    123 
    124 @t = x + y#
    125 
    126 @t' = 1 + dy over dx#
    127 
    128 @dy over dx = t' sin t#
    129 
    130 @dy over dx = -{({1 + dy over dx})}(sin(x + y))#
    131 
    132 
    133 Differentiate the second half
    134 @d over dy sin(x + y)#
    135 
    136 @y = sin t#
    137 
    138 @y' = cos t#
    139 
    140 @t = x + y#
    141 
    142 @t' = 1 + dy over dx#
    143 
    144 @dy over dx = t' sin t#
    145 
    146 @dy over dx = {({1 + dy over dx})}(cos(x + y))#
    147 
    148 Put the whole thing together
    149 
    150 @1 over 3 = (1 + {dy over dx}) (-sin (x + y) + cos (x + y))#
    151 
    152 @1 over {3 (1 + {dy over dx})} =  (-sin (x + y) + cos (x + y))#
    153 
    154 @1 over {3 (-sin (x + y) + cos (x + y)) } = (1 + {dy over dx}) #
    155 
    156 @1 over {3 (cos (x + y) - sin(x + y)) } - 1 = {dy over dx} #
    157 
    158 .PSPIC graph.ps