uni

Thing1's amazing uni repo
Log | Files | Refs

hw3.ms (2119B)


      1 .TL
      2 Calculus assignment 3
      3 .AU
      4 Lucas Standen
      5 .AI
      6 Aberystwyth University
      7 .2C
      8 
      9 .EQ
     10 delim @@
     11 .EN
     12 .EQ
     13 delim @#
     14 .EN
     15 
     16 .LP
     17 2) The number of bee's after 15 days
     18 
     19 4)
     20 
     21 @ int f''(x) dx #
     22 
     23 @ int x sup {-3 over 2} dx #
     24 
     25 @ 2 over sqrt x + C #
     26 
     27 @ C = 3 #
     28 
     29 @ int 2x sup {-1 over 2} + 3 dx #
     30 
     31 @ 4 sqrt x + 3x + C = 0 #
     32 
     33 @ C = 0 #
     34 
     35 @ y = 4 sqrt x + 3x #
     36 
     37 5)d)
     38 
     39 @ int from 0 to a x sqrt {a sup 2 - x sup 2} dx#
     40 
     41 let @ u = a sup 2 - x sup 2 #
     42 
     43 @ du over dx = - 2x #
     44 
     45 @ - 1 over {2x} du = dx #
     46 
     47 @ u = a sup 2 - a sup 2 # Adjust the bounds
     48 
     49 @ u = 0 #
     50 
     51 @ int from 0 to 0 sqrt u du #
     52 
     53 @ 0 # Any integral from 0 to 0 is 0
     54 
     55 5)f)
     56 
     57 @ int 1 over {a sup 2 + x sup 2} #
     58 
     59 let @ u = x over a #
     60 
     61 @ du over dx = 1 over a #
     62 
     63 @ 1 over a int 1 over {a sup 2 + 1} du #
     64 
     65 @ 1 over a ln(u sup 2 + 1) 2u #
     66 
     67 @ { ln({x over a + 1}) } over a {2x over { a sup 2 }} #
     68 
     69 6)b)
     70 
     71 @ int 8x ln(x) dx #
     72 
     73 @ u = ln(x) #
     74 
     75 @ u' = 1 over x #
     76 
     77 @ v' = 8x #
     78 
     79 @ v = 4x sup 2 #
     80 
     81 @ 4x sup 2 ln(x) - int 1 over x 4x sup 2 dx #
     82 
     83 @ 4x sup 2 ln(x) - int 1 4x dx #
     84 
     85 @ 4x sup 2 ln(x) - 2x sup 2 + C #
     86 
     87 6)e)
     88 
     89 @ int from 1 to 4 e sup {sqrt x} dx #
     90 
     91 let @ u = sqrt x #
     92 
     93 @ du over dx = 1 over 2 x sup { - 1 over 2 } #
     94 
     95 @ du over dx = 1 over { 2 sqrt x } #
     96 
     97 @ 2 int from {1 over 2} to {1 over 4} u e sup 2 du #
     98 
     99 @ u = u #
    100 
    101 @ u' = 1 #
    102 
    103 @ v' = e sup u #
    104 
    105 @ v = e sup u #
    106 
    107 @ 2 (u e sup u - int from {1 over 2} to {1 over 4} e sup u du) #
    108 
    109 @ 2 e sup {sqrt x} ( sqrt x - 1 ) #
    110 
    111 @ [ from {1 over 2} to {1 over 4} 2 e sup {sqrt x} ( sqrt x - 1 ) ] #
    112 
    113 @ - sqrt e - e sup { { sqrt 2} over 2 } ( - 2 + sqrt 2 ) #
    114 
    115 7)a)
    116 
    117 @ y = tan sup -1 x #
    118 
    119 @ x = tan y #
    120 
    121 @ tan(x) = tan(tan sup -1 x) #
    122 
    123 @ d over dx tan y = d over dx x #
    124 
    125 @ sec sup 2 y dy over dx = 1 #
    126 
    127 @ 1 over { sec sup 2 y} = dy over dx #
    128 
    129 @ 1 over { 1 + tan sup 2 y } = dy over dx #
    130 
    131 @ 1 over {1 + x sup 2} = dy over dx #
    132 
    133 7)b)
    134 
    135 @ int from 0 to 1 tan sup -1 x dx #
    136 
    137 @ u = tan sup -1 x #
    138 
    139 @ u' = 1 over {1 + x sup 2} #
    140 
    141 @ v' = 1 #
    142 
    143 @ v = x #
    144 
    145 @ x tan sup -1 x - int from 0 to 1 x over {1 + x sup 2 } dx #
    146 
    147 @ x tan sup -1 x - [ from 0 to 1 x tan sup -1 x ] #
    148 
    149 @ [ from 0 to 1 x tan sup -1 x - 1 over {4 pi} ] #
    150 
    151 @ 1 over {4 pi} - 1 over {4 pi} #
    152 
    153 @ 0 #