uni

Thing1's amazing uni repo
Log | Files | Refs

mp10610.tex (2732B)


      1 \documentclass{article}
      2 \usepackage[margin=0.25in]{geometry}
      3 \usepackage{pgfplots}
      4 \pgfplotsset{width=10cm,compat=1.9}
      5 
      6 \newcommand{\Plot}[2] {
      7 	\begin{center}
      8 	\textbf{#2}
      9 	\end{center}
     10 
     11 	\begin{center}
     12 		\begin{tikzpicture}
     13 			\begin{axis}[
     14 					axis lines = middle,
     15 					xmin = -5,
     16 					xmax = 5,
     17 					ymin = -5,
     18 					ymax = 5,
     19 				]
     20 
     21 				\addplot[color=red]{ #1 };
     22 			\end{axis}
     23 		\end{tikzpicture}
     24 	\end{center}
     25 }
     26 \newcommand{\Cmpplot}[3] {
     27 	\begin{center}
     28 	\textbf{#3}
     29 	\end{center}
     30 
     31 	\begin{center}
     32 		\begin{tikzpicture}
     33 			\begin{axis}[
     34 					axis lines = middle,
     35 					xmin = -5,
     36 					xmax = 5,
     37 					ymin = -5,
     38 					ymax = 5,
     39 				]
     40 
     41 				\addplot[color=red, samples=100]{ #1 };
     42 				\addplot[color=blue, samples=100]{ #2 };
     43 			\end{axis}
     44 		\end{tikzpicture}
     45 	\end{center}
     46 }
     47 
     48 
     49 
     50 \begin{document}
     51 \begin{center}
     52 
     53 	\section{Exponential functions}
     54 	Exponential functions are functions that in some way involve \( e^x \).
     55 	\Plot{exp(x)}{A graph of \(e^x\)}
     56 	Note the fact that they never cross the X axis. They can be manipulated just 
     57 	like any other graph.
     58 	\Plot{(exp(x)) + 1}{A graph of \(e^x + 1\)}
     59 	\(e^x\) is a special function, this is because \(\frac{dy}{dx}\) is still 
     60 	\(e^x\)
     61 	\newpage
     62 
     63 	\section{Logarithmic functions}
     64 	Logarithmic functions involve log in some way. Log is defined such that
     65 	\\
     66 	\begin{math}
     67 		\log_2 8 = 3
     68 	\end{math}
     69 	\\
     70 	is true.
     71 
     72 	ln is a special function that defines the log of base e, it can be written 
     73 	like so
     74 	\\
     75 	\begin{math}
     76 		\log_e x = ln(x)
     77 	\end{math}
     78 	\\
     79 	The functions \(exp(x)\) and \(ln(x)\) are linked such that \(ln(x)\)
     80 	is a reflection of \(exp(x)\) on the line \(y = x\)
     81 	\Cmpplot{exp(x)}{ln(x)}{A graph comparing \(exp(x)\) and \(ln(x)\)}
     82 
     83 	\section{Even and odd functions}
     84 	An even function is a function that satisfies the equation
     85 	\\
     86 	\begin{math}
     87 		f(x) = f(-x)
     88 	\end{math}
     89 	\\
     90 	An example of this is the function \(x^2\), as a value of 
     91 	\(-x\) has the same output as its corresponding \(x\).
     92 
     93 	An odd function is a function that satisfies the equation
     94 	\\
     95 	\begin{math}
     96 		f(-x) = -f(x)
     97 	\end{math}
     98 	\\
     99 	An example of this is  \(y = x\), lets say \(x = 1\), 
    100 	this means that \(-x = -1\); if we substitute \(x\) into \(y = f(-x)\)
    101 	then \(y = -1\). If we then substitute \(x\) into \(y = -f(x)\) then 
    102 	\(y = -1\); we can see that y is the same either way and is thus an odd
    103 	function.
    104 
    105 	Some functions may not be odd or even.
    106 
    107 	A function can be split into its odd and even components using the following 
    108 	formula
    109 	\\
    110 	\begin{math}
    111 		f_o (x) = \frac{f(x) - f(x)}{2} 
    112 	\end{math} \\
    113 	\begin{math}
    114 		f_e (x) = \frac{f(x) + f(x)}{2}
    115 	\end{math}
    116 	\\
    117 	The expression 
    118 	\begin{math}
    119 		f_e (x) + f_o (x) = f(x)
    120 	\end{math}
    121 	\\
    122 	is always true.
    123 
    124 \end{center}
    125 \end{document}