commit 5c276d6f15b18442fec68c98be1998513e489d19 parent e8cf90bd263022333d81e666d3b190f95a525d21 Author: thing1 <thing1@seacrossedlovers.xyz> Date: Tue, 18 Nov 2025 22:50:57 +0000 homework Diffstat:
| A | MP10610/hw3/Makefile | | | 2 | ++ |
| A | MP10610/hw3/hw3.ms | | | 151 | ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ |
2 files changed, 153 insertions(+), 0 deletions(-)
diff --git a/MP10610/hw3/Makefile b/MP10610/hw3/Makefile @@ -0,0 +1,2 @@ +hw3.pdf: hw3.ms + groff -e -Tps -ms hw3.ms | ps2pdf - > hw3.pdf diff --git a/MP10610/hw3/hw3.ms b/MP10610/hw3/hw3.ms @@ -0,0 +1,151 @@ +.TL +Calculus assignment 3 +.AU +Lucas Standen +.AI +Aberystwyth University +.2C + +.EQ +delim @@ +.EN +.EQ +delim @# +.EN + +.LP +2) The number of bee's after 15 days + +4) + +@ int f''(x) dx # + +@ int x sup {-3 over 2} dx # + +@ 2 over sqrt x + C # + +@ C = 3 # + +@ int 2x sup {-1 over 2} + 3 dx # + +@ 4 sqrt x + 3x + C = 0 # + +@ C = 0 # + +@ y = 4 sqrt x + 3x # + +5)d) + +@ int from 0 to a x sqrt {a sup 2 - x sup 2} dx# + +let @ u = a sup 2 - x sup 2 # + +@ du over dx = - 2x # + +@ - 1 over {2x} du = dx # + +@ u = a sup 2 - a sup 2 # Adjust the bounds + +@ u = 0 # + +@ int from 0 to 0 sqrt u du # + +@ 0 # Any integral from 0 to 0 is 0 + +5)f) + +@ int 1 over {a sup 2 + x sup 2} # + +let @ u = x over a # + +@ du over dx = 1 over a # + +@ 1 over a int 1 over {a sup 2 + 1} du # + +@ 1 over a ln(u sup 2 + 1) 2u # + +@ { ln({x over a + 1}) } over a {2x over { a sup 2 }} # + +6)b) + +@ int 8x ln(x) dx # + +@ u = ln(x) # + +@ u' = 1 over x # + +@ v' = 8x # + +@ v = 4x sup 2 # + +@ 4x sup 2 ln(x) - int 1 over x 4x sup 2 dx # + +@ 4x sup 2 ln(x) - int 1 4x dx # + +@ 4x sup 2 ln(x) - 2x sup 2 + C # + +6)e) + +@ int from 1 to 4 e sup {sqrt x} dx # + +let @ u = sqrt x # + +@ du over dx = 1 over 2 x sup { - 1 over 2 } # + +@ du over dx = 1 over { 2 sqrt x } # + +@ 2 int from {1 over 2} to {1 over 4} u e sup 2 du # + +@ u = u # + +@ u' = 1 # + +@ v' = e sup u # + +@ v = e sup u # + +@ 2 (u e sup u - int from {1 over 2} to {1 over 4} e sup u du) # + +@ 2 e sup {sqrt x} ( sqrt x - 1 ) # + +@ [ from {1 over 2} to {1 over 4} 2 e sup {sqrt x} ( sqrt x - 1 ) ] # + +@ - sqrt e - e sup { { sqrt 2} over 2 } ( - 2 + sqrt 2 ) # + +7)a) + +@ y = tan sup -1 x # + +@ x = tan y # + +@ tan(x) = tan(tan sup -1 x) # + +@ d over dx tan y = d over dx x # + +@ sec sup 2 y dy over dx = 1 # + +@ 1 over { sec sup 2 y} = dy over dx # + +@ 1 over { 1 + tan sup 2 y } = dy over dx # + +@ 1 over {1 + x sup 2} = dy over dx # + +@ int from 0 to 1 tan sup -1 x dx # + +@ u = tan sup -1 x # + +@ u' = 1 over {1 + x sup 2} # + +@ v' = 1 # + +@ v = x # + +@ x tan sup -1 x - int from 0 to 1 x over {1 + x sup 2 } dx # + +@ x tan sup -1 x - [ from 0 to 1 x tan sup -1 x ] # + +@ [ from 0 to 1 x tan sup -1 x - 1 over {4 pi} ] # + +@ 1 over {4 pi} - 1 over {4 pi} # + +@ 0 #