uni

Thing1's amazing uni repo
Log | Files | Refs

commit ac1507e6c474eb824c958321b480a31e6c3a1780
parent df18b8bae3a90497de2b6aa32fc2f7c5ff449563
Author: thing1 <thing1@seacrossedlovers.xyz>
Date:   Thu,  9 Oct 2025 12:07:54 +0100

made tex notes of past few lectures

Diffstat:
M.gitignore | 4++++
AMP10610/tex/Makefile | 6++++++
AMP10610/tex/mp10610.tex | 125+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
3 files changed, 135 insertions(+), 0 deletions(-)

diff --git a/.gitignore b/.gitignore @@ -2,3 +2,7 @@ *.html *.o *.swp +*.log +*.aux +*.auxlock +*.md5 diff --git a/MP10610/tex/Makefile b/MP10610/tex/Makefile @@ -0,0 +1,6 @@ +all: mp10610 + +mp10610: mp10610.tex + pdflatex mp10610.tex +clean: + rm -rf *.log *.pdf *.aux *.auxlock *.md5 diff --git a/MP10610/tex/mp10610.tex b/MP10610/tex/mp10610.tex @@ -0,0 +1,125 @@ +\documentclass{article} +\usepackage[margin=0.25in]{geometry} +\usepackage{pgfplots} +\pgfplotsset{width=10cm,compat=1.9} + +\newcommand{\Plot}[2] { + \begin{center} + \textbf{#2} + \end{center} + + \begin{center} + \begin{tikzpicture} + \begin{axis}[ + axis lines = middle, + xmin = -5, + xmax = 5, + ymin = -5, + ymax = 5, + ] + + \addplot[color=red]{ #1 }; + \end{axis} + \end{tikzpicture} + \end{center} +} +\newcommand{\Cmpplot}[3] { + \begin{center} + \textbf{#3} + \end{center} + + \begin{center} + \begin{tikzpicture} + \begin{axis}[ + axis lines = middle, + xmin = -5, + xmax = 5, + ymin = -5, + ymax = 5, + ] + + \addplot[color=red, samples=100]{ #1 }; + \addplot[color=blue, samples=100]{ #2 }; + \end{axis} + \end{tikzpicture} + \end{center} +} + + + +\begin{document} +\begin{center} + + \section{Exponential functions} + Exponential functions are functions that in some way involve \( e^x \). + \Plot{exp(x)}{A graph of \(e^x\)} + Note the fact that they never cross the X axis. They can be manipulated just + like any other graph. + \Plot{(exp(x)) + 1}{A graph of \(e^x + 1\)} + \(e^x\) is a special function, this is because \(\frac{dy}{dx}\) is still + \(e^x\) + \newpage + + \section{Logarithmic functions} + Logarithmic functions involve log in some way. Log is defined such that + \\ + \begin{math} + \log_2 8 = 3 + \end{math} + \\ + is true. + + ln is a special function that defines the log of base e, it can be written + like so + \\ + \begin{math} + \log_e x = ln(x) + \end{math} + \\ + The functions \(exp(x)\) and \(ln(x)\) are linked such that \(ln(x)\) + is a reflection of \(exp(x)\) on the line \(y = x\) + \Cmpplot{exp(x)}{ln(x)}{A graph comparing \(exp(x)\) and \(ln(x)\)} + + \section{Even and odd functions} + An even function is a function that satisfies the equation + \\ + \begin{math} + f(x) = f(-x) + \end{math} + \\ + An example of this is the function \(x^2\), as a value of + \(-x\) has the same output as its corresponding \(x\). + + An odd function is a function that satisfies the equation + \\ + \begin{math} + f(-x) = -f(x) + \end{math} + \\ + An example of this is \(y = x\), lets say \(x = 1\), + this means that \(-x = -1\); if we substitute \(x\) into \(y = f(-x)\) + then \(y = -1\). If we then substitute \(x\) into \(y = -f(x)\) then + \(y = -1\); we can see that y is the same either way and is thus an odd + function. + + Some functions may not be odd or even. + + A function can be split into its odd and even components using the following + formula + \\ + \begin{math} + f_o (x) = \frac{f(x) - f(x)}{2} + \end{math} \\ + \begin{math} + f_e (x) = \frac{f(x) + f(x)}{2} + \end{math} + \\ + The expression + \begin{math} + f_e (x) + f_o (x) = f(x) + \end{math} + \\ + is always true. + +\end{center} +\end{document}