uni

Thing1's amazing uni repo
Log | Files | Refs

commit ce461971506167f017a2fca98e03c5689041e663
parent 96155de15af32262f47696751d50ffc86b52e13e
Author: thing1 <thing1@seacrossedlovers.xyz>
Date:   Mon,  3 Nov 2025 18:36:13 +0000

did homework

Diffstat:
M.gitignore | 1+
AMP10610/hw2/Makefile | 5+++++
AMP10610/hw2/graph.jpeg | 0
AMP10610/hw2/hw2.ms | 158+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
4 files changed, 164 insertions(+), 0 deletions(-)

diff --git a/.gitignore b/.gitignore @@ -1,3 +1,4 @@ +*.ps *.pdf *.html *.o diff --git a/MP10610/hw2/Makefile b/MP10610/hw2/Makefile @@ -0,0 +1,5 @@ +out.pdf: hw2.ms + magick graph.jpeg graph.ps + groff -ms -e -Tps hw2.ms | ps2pdf - > out.pdf +clean: + rm *.ps *.pdf diff --git a/MP10610/hw2/graph.jpeg b/MP10610/hw2/graph.jpeg Binary files differ. diff --git a/MP10610/hw2/hw2.ms b/MP10610/hw2/hw2.ms @@ -0,0 +1,158 @@ +.TL +Calculus assignment 2 +.AU +Lucas Standen (lus53@aber.ac.uk) + +.EQ +delim @@ +.EN +.EQ +delim @# +.EN + +.2C + +.LP +3)a) @f sub 1 (x) = x sup 2# + +@f sub 2 (x) = sqrt x# + +@f sub 1 (1) = 1# + +@f sub 2 (1) = 1# + +@f sub 1 (1) = f sub 2 (1)# + +Therefore f(x) is continuous + +@f' sub 1 (x) = 2x# + +@f' sub 2 (x) = 1 over {2 sqrt x}# + +@lim sub { -> 1} f' sub 1 (x) = 1# + +@lim sub {x -> 1} f' sub 2 (x) = 1 over 2# + +@lim sub {x -> 1} f' sub 2 (x) != lim sub { -> 1} f' sub 1 (x)# + +Therefore f(x) is not differentiable + +3)b) +.I +See end of doc. + +5)c) @lim sub {h -> 0} {sqrt {3 (x + h) + 1} - sqrt {3 x + 1}} over h# + +@lim sub {h -> 0} {sqrt {3 (x + h) + 1} - sqrt {3 x + 1}} over h {sqrt {3 (x + h) + 1} + sqrt {3 x + 1}} over {sqrt {3 (x + h) + 1} + sqrt {3 x + 1}}# + +@lim sub {h -> 0} {(3 (x + h) + 1) - {(3 x + 1)}} over { h sqrt {3 ( x + h ) + 1} + sqrt {3 x + 1}}# + +@lim sub {h -> 0} { 3h } over { h sqrt {3 ( x + h ) + 1} + sqrt {3 x + 1}}# + +@lim sub {h -> 0} { 3 } over { sqrt {3 ( x + h ) + 1} + sqrt {3 x + 1}}# + +@3 over { 2 sqrt {3 x + 1}} # + +6)b) @u = sqrt x# + +@u' = 1 over { 2 sqrt x }# + +@v = sin x# + +@v' = cos x# + +@ dy over dx = 1 over {2 sqrt x} sin x + sqrt x cos x# + +6)c) @u = 2x# + +@u' = 2# + +@v = 4 + x sup 2# + +@v' = 2x# + +@ dy over dx = {{2 (4 + {x sup 2})} - {4 x sup 2}} over {(4 + {x sup 2})} sup 2# + +@ dy over dx = - {2x sup 2 + 8} over {(4 + {x sup 2})} sup 2# + +7)d) + +let @f(x) = {x sup 2 + 1} over {x sup 2 - 1}# + +let @y = f(x) sup 3# + +@f' (x)# + +@u = x sup 2 + 1# + +@u' = 2x# + +@v = x sup 2 - 1# + +.I +next page, first column + +.LP +@v' = 2x# + +@f'(x) = {{2x (x sup 2 - 1)} - {2x (x sup 2 + 1)}} over {(x sup 2 - 1) sup 2}# + +@f'(x) = {{(x sup 3 - 2x)} - {(x sup 3 + 2x)}} over {(x sup 2 - 1) sup 2}# + +@f'(x) = {-4x} over {(x sup 2 - 1) sup 2}# + +@dy over dx = 3 f(x) sup 2 f'(x)# + +@dy over dx = -12 ({{{x sup 2} + 1} over {{x sup 2} - 1}}) sup 2 x over {{ (x sup 2 - 1) } sup 2}# + +8) @g'(x) = cos x - 8 sin 4x# + +@g''(x) = -sin x - 32 cos 4x# + +@g'({pi over 4}) = {sqrt 2} over 2# + +@g''({pi over 4}) = {64 - sqrt 2} over 2# + +9)c) +Differentiate the first half +@d over dy cos(x + y)# + +@y = cos t# + +@y' = -sin t# + +@t = x + y# + +@t' = 1 + dy over dx# + +@dy over dx = t' sin t# + +@dy over dx = -{({1 + dy over dx})}(sin(x + y))# + + +Differentiate the second half +@d over dy sin(x + y)# + +@y = sin t# + +@y' = cos t# + +@t = x + y# + +@t' = 1 + dy over dx# + +@dy over dx = t' sin t# + +@dy over dx = {({1 + dy over dx})}(cos(x + y))# + +Put the whole thing together + +@1 over 3 = (1 + {dy over dx}) (-sin (x + y) + cos (x + y))# + +@1 over {3 (1 + {dy over dx})} = (-sin (x + y) + cos (x + y))# + +@1 over {3 (-sin (x + y) + cos (x + y)) } = (1 + {dy over dx}) # + +@1 over {3 (cos (x + y) - sin(x + y)) } - 1 = {dy over dx} # + +.PSPIC graph.ps